b-Chromatic Number of Subdivision Edge and Vertex Corona

T.Pathinathan¹, A.Arokia Mary², D.Bhuvaneswari² ¹Department of Mathematics,Loyola college,Chennai ²Department of Mathematics, St.Joseph'sCollege, Cuddalore, India Email:arokia68@gmail.com,bhuvi64@gmail.com

Abstract - In this paper, we find that the b-chromatic number on corona graph of subdivision-vertex path with path. Then corona graph of any graph with path, cycle and complete graph and cycle with path.

Keywords: b-chromatic number, corona graph, subdivisionedge corona, subdivision-vertex corona, edge corona.

I. INTRODUCTION

The b-chromatic number of a graph G, denoted by $\chi_b(G)$, is the maximal integer k such that G may have a b-coloring with k colors. This parameter has been defined by Irving and Manlove. The subdivision graph S(G) of a graph G is the graph obtained by inserting a new vertex into every edge of G, we denote the set of such new vertices by I(G).

In two new graph operations based on subdivision graphs, subdivision-vertex join and subdivision-edge join. The corona of two graphs was first introduced by R.Frucht and F.Harary in [11]. And another variant of the corona operation, the neighbourhood corona, was introduced in [12].

II. PRELIMINARIES

DEFINITION2.1.Let G_1 and G_2 be two graphs. Let $V(G_1) = \{v_1, v_2, ..., v_k\}$ and take k copies of G_2 . The corona $G_1 \circ G_2$ is the graph obtained by joining each V_i to every vertex of the i^{th} copy of G_2 , $1 \le i \le k$.

DEFINITION2.2. Let G_1 and G_2 be two graphs on disjoint sets of n_1 and n_2 vertices, m_1 and m_2 edges respectively. The edge corona $G_1 \diamond G_2$ of G_1 and G_2 is defined as the graph obtained by taking one copy of G_1 and m_1 copies of G_2 and then joining two end-vertices of the i^{th} edge of G_1 to every vertex in the i^{th} copy of G_2 .

Example: Let G_1 be the cycle of order 4 and G_2 be the complete graph k_2 of order 2. The two edge coronas $G_1 \circ G_2$.

III. SUBDIVISION-VERTEX AND SUBDIVISION-EDGE CORONA

DEFINITION 3.1. The Subdivision-vertex Corona of two vertex-disjoint graphs G_1 and G_2 , denoted by $G_1 \odot G_2$ is the graph obtained from $S(G_1)$ and $|V(G_1)|$ copies of G_2 , all vertex-disjoint by joining the i^{ih} vertex of $V(G_1)$ to every vertex in the i^{ih} copy of G_2 .

DEFINITION3.2. The Subdivision-edge Corona of two vertex disjoint graphs G_1 and G_2 denoted by $G_1 \ominus G_2$ is the graph obtained from $S(G_1)$ and $|I(G_1)|$ copies of G_2 , all vertex-disjoint, by joining the i^{th} vertex of $I(G_1)$ to every vertex in the i^{th} copy of G_2 .

Let G_1 is a graph on n_1 vertices and m_1 edges and G_2 is a graph on n_2 vertices and m_2 edges then the subdivisionvertex Corona $G_1 \odot G_2$ has $n_1(1+n_2) + m_1$ vertices and $2m_1 + n_1(n_2 + m_2)$ edges, and the Subdivision-edge Corona $G_1 \ominus G_2$ has $m_1(1+n_2) + n_1$ vertices and $m_1(2+n_2+m_2)$ edges.

THEOREM 3.3. Let P_n be a path of *n* vertices and P_m be a path of *m* vertices. Then

 $\chi_b(P_n \odot P_m) = \begin{cases} 2n-1 & n \ge m \\ m+1 & n < m \end{cases}.$

PROOF.

Let $V(P_n) = \{v_1, v_2, \dots, v_n\}$ and $V(P_m) = \{u_1, u_2, \dots, u_m\}$. let $V(P_n \circ P_m) = \{v_i : 1 \le i \le n\} \cup \{u_{ij} : 1 \le i \le m; 1 \le j \le m\}$. By the definition of corona graph, each vertex of P_n is

adjacent to every vertex of a copy of P_m .

Assign the following n-coloring for $P_n \odot P_m$ as b-chromatic.

- For $1 \le i \le n$, assign the color c_i to v_i .
- For $1 \le i \le n$, assign the color c_i to u_{1i} , $\forall i \ne 1$.
- For $1 \le i \le n$, assign the color c_i to u_{2i} , $\forall i \ne 2$.
- For $1 \le i \le n$, assign the color c_i to u_{3i} , $\forall i \ne 3$.
- For $1 \le i \le n$, assign the color c_i to u_{ni} , $\forall i \ne n$.
- For $1 \le i \le n$, assign to vertex u_{ii} one of allowed colors.

Define $\chi_b(P_3 \odot P_2) = 5$.

- For $1 \le i \le 5$, assign the color c_i to v_i .
- For $1 \le \ell \le 5$, assign the color c_i to $u_{1i} \forall i \ne 1$.
- For $1 \le \ell \le 5$, assign the color c_i to $u_{2i} \forall i \ne 2$.
- For $1 \le \ell \le 5$, assign the color c_i to $u_{3i} \forall i \ne 3$.

IV.VERTEX CORONA

4.1 GRAPHS WITH PATH

THEOREM4.1.1 Let Gbe a simple graph on *n* vertices. Then $\chi_b(\mathbf{G} \circ \mathbf{P}_n) = \begin{cases} n+1, & \text{for } n \le 3 \\ n & \text{for } n > 3 \end{cases}$

PROOF:

Let
$$V(G) = \{v_1, v_2, ..., v_n\}$$
 and $V(P_n) = \{u_1, u_2, ..., u_n\}$.
Let $V(G \circ P_n) = \{v_i : 1 \le i \le n\} \cup \{U_{ij} : 1 \le i \le n; 1 \le j \le n\}$.

By the definition of Corona graph each vertex of G is adjacent to every vertex of *n* copy of P_n . i.e) every vertex $v_i \in V(G)$ is adjacent to every vertex from the set $\{u_{ij}: 1 \le j \le n\}$.

Assign the following *n* -coloring for $G \circ P_n$ as b-chromatic

- For $1 \le i \le n$, assign the color c_i to v_i .
- For $1 \le i \le n$, assign the color c_i to u_{1i} , $\forall i \ne 1$.
- For $1 \le i \le n$, assign the color c_i to u_{2i} , $\forall i \ne 2$...
- For $1 \le i \le n$, assign the color v_i to u_{ni} , $\forall i \ne n$.
- For $1 \le i \le n$, assign the vertex u_{ii} one of allowed colors-such color exists because $2 \le \deg(u_{ii}) \le 3$ and n > 3.

Let us assume that $\chi_b(G \circ P_n)$ is greater than n ie) $\chi_b(G \circ P_n) = n+1 \quad \forall n > 3$ there must be at least n+1 vertices of degree n in $G \circ P_n$ all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices $\{v_1, v_2, ..., v_n\}$. Since these are only ones with degree at least n. This is a contradiction. b-coloring with n+1 colors is impossible.

Thus we have $\chi_b(\mathbf{G} \circ \mathbf{P}_n) \le n$. Hence $\chi_b(\mathbf{G} \circ \mathbf{P}_n) = n$, $\forall n > 3$.

Define b-coloring of $G \circ P_4(|V(G)|) = 4$ with 5 colors in the following way:

- For $1 \le i \le 5$, assign the color c_i to v_i .
- For $1 \le l \le 5$, assign the color c_l to u_{1l} , $\forall l \ne 1$.
- For $1 \le l \le 5$, assign the color c_l to u_{2l} , $\forall l \ne 2$.
- For $1 \le l \le 5$, assign the color c_l to u_{3l} , $\forall l \ne 3$.
- For $1 \le l \le 5$, assign the color c_l to u_{4l} , $\forall l \ne 4$.
- For $1 \le l \le 5$, assign the color c_l to u_{5l} , $\forall l \ne 5$.

We have

$$\chi_h(\mathbf{G} \circ \mathbf{P}_4) = 5$$
. Hence $\chi_h(\mathbf{G} \circ \mathbf{P}_n) = n \quad \forall n > 3$.

4.2. GRAPH WITH CYCLE

THEOREM4.2.1. Let G be a simple graph on n vertices n > 3. Then $\chi_b(\mathbf{G} \circ \mathbf{C}_n) = n$.

Proof:

Let $V(G) = \{v_1, v_2, ..., v_n\}$ and $V(C_n) = \{u_1, u_2, ..., u_n\}$. Let $V(G \circ C_n) = \{v_i : 1 \le i \le n\} \cup \{u_{ij} : 1 \le i \le n; 1 \le j \le n\}$. By the definition of Corona graph, each vertex of G is adjacent to every vertex of a copy of C_n . i.e., every vertex $v_i \in V(G)$ is adjacent to every vertex from the set $\{u_{ij} : 1 \le j \le n\}$. Assign the following n -coloring for $G \circ C_n$ as b-chromatic:

- For $1 \le i \le n$, assign the color c_i to v_i .
- For $1 \le i \le n$, assign the color c_i to u_{1i} , $\forall i \ne 1$.
- For $1 \le i \le n$, assign the color c_i to u_{2i} , $\forall i \ne 2$.
- For $1 \le i \le n$, assign the color c_i to u_{ni} , $\forall i \ne n$.
- For $1 \le i \le n$, assign to vertex u_{ii} one of allowed

colors-such color exists, because $deg(u_{ii}) = 3$ and n > 3.

 $\chi_b(G \circ C_n) \ge n$. Assume that $\chi_b(G \circ C_n)$ is greater than n, ie) $\chi_b(G \circ C_n) = n+1 \quad \forall n > 3$, there must be at least n+1 vertices of degree n in $G \circ C_n$, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices $\{v_1, v_2, ..., v_n\}$. Since these are only ones with degree at least n. This is the contradiction b-coloring with n+1 color is impossible.

We have
$$\chi_b(\mathbf{G} \circ \mathbf{C}_n) = n$$
. Hence $\chi_b(\mathbf{G} \circ \mathbf{C}_n) = n$,
 $\forall n > 3$.

 $\chi_b(G \circ C_3) = 4.$

4.3. CYCLE WITH PATH

THEOREM 4.3.1Let C_n be a cycle of n vertices and P_n be a path of n vertices. Then $\chi_h(C_n \circ P_n) = n$

Proof:

Let $\mathbf{V}(\mathbf{C}_n) = \{v_1, v_2, ..., v_n\}$ and $\mathbf{V}(\mathbf{P}_n) = \{u_1, u_2, ..., u_n\}$.Let $\mathbf{V}(\mathbf{C}_n \circ \mathbf{P}_n) = \{v_i : 1 \le i \le n\} \cup \{u_{ij} : 1 \le i \le n; 1 \le j \le n\}$, By the definition of Corona graph, each vertex of G is adjacent to every vertex of a copy of \mathbf{P}_n . i.e., every vertex $v_i \in \mathbf{V}(\mathbf{C}_n)$ is adjacent to every vertex from the set $\{u_{ij} : 1 \le j \le n\}$. $\chi_b(\mathbf{C}_n \circ \mathbf{P}_n) \ge n$. Assign the following b-coloring for $C_n \circ P_n$.

- For $1 \le i \le n$, assign the color c_i to v_i .
- For $1 \le i \le n$, assign the color c_i to u_{1i} , $\forall i \ne 1$.
- For $1 \le i \le n$, assign the color c_i to u_{2i} , $\forall i \ne 2$.

.....

.....

.....

- For $1 \le i \le n$, assign the color c_i to u_{ni} , $\forall i \ne n$.
- For $1 \le i \le n$, assign to vertex u_{ii} one of allowed colors such color exists, because $2 \le \deg(\mathbf{u}_{ii}) \le 3$ and $n \ge 3$.

We have $\chi_b(\mathbf{C}_n \circ \mathbf{P}_n) \le n$. Hence $\chi_b(\mathbf{C}_n \circ \mathbf{P}_n) = n$. We have $\chi_b(\mathbf{C}_3 \circ \mathbf{P}_2) = 3$.

4.4. GRAPH WITH COMPLETE GRAPH

Theorem4.4.1 :Let G be a simple graph on n vertices. Then $\chi_h(G \circ K_n) = n+1.$

Proof.

Let V(G) = $\{v_1, v_2, ..., v_n\}$ and V(K_n) = $\{u_1, u_2, ..., u_n\}$.

Let $V(G \circ K_n) = \{v_i : 1 \le i \le n\} \cup \{u_{ij} : 1 \le i \le n; 1 \le j \le n\}$. By the definition of corona graph, each vertex of G is adjacent to every vertex of a copy of K_n . i.e., every vertex $v_i \in V(G)$ is adjacent to every vertex from the set $\{u_{ij} : 1 \le j \le n\}$.

Assign the following n+1-coloring for $G \circ K_n$ as bchromatic:

- For $1 \le i \le n$, assign the color c_i to v_i .
- For $1 \le l \le n$, assign the color c_l to u_{1l} , $\forall l \ne 1$.
- For $1 \le l \le n$, assign the color c_l to u_{2l} , $\forall l \ne 2$.

- For $1 \le l \le n$, assign the color c_l to u_{3l} , $\forall l \ne 3$.
- For $1 \le l \le n$, assign the color c_l to u_{4l} , $\forall l \ne 4$.
- For $1 \le l \le n$, assign the color c_l to u_{nl} , $\forall l \ne n$.
- For $1 \le l \le n$, assign the color c_{n+1} and u_{ll} Therefore, $\chi_b(G \circ K_n) \ge n+1.$

Let us assume that $\chi_b(G \circ K_n)$ is greater than n+1, i.e., $\chi_b(G \circ K_n) = n+2$, there must be at least n+2 vertices of degree n+1 in $G \circ K_n$, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices $v_1, v_2, ... v_n$, since these are only ones with degree at least n+1. This is the contradiction, b-coloring with n+2 colors is impossible. Thus, we have $\chi_b(G \circ K_n) \le n+1$.. Hence,.

V. CONCLUSION

In this existing subdivision-vertex corona graphs, they used spectrum. Here we study about subdivision- vertex corona graph using b-chromatic number.

REFERENCE

- [1] B.Effantin, The b-chromatic number of power graphs of complete caterpillars, J. Discrete Math. Sci. Cryptogr. 8(2005), 483-502.
- [2] B.Effantin and H.Kheddouci, The b-chromatic number of some power graphs, Discrete Math. Theor.Comput.Sci. 6 (2003).45-54.
- [3] B.Effantin and H.Kheddouci. Exact value for the b-chromatic number of a power complete k-ary tree, J. Discrete Math. Sci. Cryptogr. 8 (2005), 117-129.
- [4] F. Bonomo, G.Duran, F.Maffray, J.Marenco and M.Valencia-pabon, On the b-colring of cographs and P_4 -sparse graphs, Graphs and
- Combinatorics, 25(2) (2009), 153-167. [5] R.W. Irving and D.F. Manlove, The b-Chromatic number of a graph,
- [5] K. W. HVIIG and D.F. Manove, the b-Chromatic number of a graph, Discrete Appl.Math. 91 (1999), 127-141.
 [6] M. Kovider, and A. El Schült About h colouring of nomine crophs.
- [6] M. Kouider and A. El Sahili, About b-colouring of regular graphs, Rapport de Recherche No 1432, CNRS-Universite Paris SudLRI, 02/2006.
- [7] Marko Jakovacand SandiKlavzar, The b-Chromatic number of cubic graphs, Graphs and Combinatorics, 26(1) (2010) 107-118.
- [8] Venkatachalam.M and vernoldVivin.J, The b-Chromatic number of star graph families, Le Mathematiche, 65(1) (2010), 119-125.
- [9] D. M. Cvetkovic, M. Doob, H. Simic, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010.
- [10] G.Indulal, Spectrum of two new joins of graphs and iinfinte families of integral graphs, KragujevacJ.Math. 36 (2012) 133-139.
- [11] R. Frucht, F.Haray, On the corona of two graphs, Aequationes Math. 4 (1970) 322-325.
- [12] I. Gopalapillai, The spectrum of neighborhood corona of graphs, Kragujevacjournal of Mathematics 35 (2011) 493-500.