b-Chromatic Number of Subdivision Edge and Vertex Corona

T.Pathinathan ${ }^{1}$, A.Arokia Mary ${ }^{2}$, D.Bhuvaneswari ${ }^{2}$
${ }^{1}$ Department of Mathematics,Loyola college,Chennai
${ }^{2}$ Department of Mathematics, St.Joseph'sCollege, Cuddalore, India
Email:arokia68@gmail.com,bhuvi64@gmail.com

Abstract - In this paper, we find that the b-chromatic number on corona graph of subdivision-vertex path with path. Then corona graph of any graph with path, cycle and complete graph and cycle with path.

Keywords: b-chromatic number, corona graph, subdivisionedge corona, subdivision-vertex corona, edge corona.

I. INTRODUCTION

The b-chromatic number of a graph G, denoted by $\chi_{b}(\mathrm{G})$, is the maximal integer k such that G may have a b-coloring with k colors. This parameter has been defined by Irving and Manlove. The subdivision graph $S(G)$ of a graph G is the graph obtained by inserting a new vertex into every edge of G, we denote the set of such new vertices by $I(G)$.

In two new graph operations based on subdivision graphs, subdivision-vertex join and subdivision-edge join. The corona of two graphs was first introduced by R.Frucht and F.Harary in [11]. And another variant of the corona operation, the neighbourhood corona, was introduced in [12].

II. PRELIMINARIES

DEFINITION2.1.Let G_{1} and G_{2} be two graphs. Let $\mathrm{V}\left(\mathrm{G}_{1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and take k copies of G_{2}. The corona $G_{1} \circ G_{2}$ is the graph obtained by joining each V_{i} to every vertex of the $i^{\text {th }}$ copy of $G_{2}, 1 \leq i \leq k$.

DEFINITION2.2. Let G_{1} and G_{2} be two graphs on disjoint sets of n_{1} and n_{2} vertices, m_{1} and m_{2} edges respectively. The edge corona $G_{1} \diamond G_{2}$ of G_{1} and G_{2} is defined as the graph obtained by taking one copy of G_{1} and m_{1} copies of G_{2} and then joining two end-vertices of the $i^{\text {th }}$ edge of G_{1} to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Example: Let G_{1} be the cycle of order 4 and G_{2} be the complete graph k_{2} of order 2 . The two edge coronas $G_{1} \diamond G_{2}$.

III. SUBDIVISION-VERTEX AND SUBDIVISIONEDGE CORONA

DEFINITION 3.1. The Subdivision-vertex Corona of two vertex-disjoint graphs G_{1} and G_{2}, denoted by $G_{1} \odot G_{2}$ is the graph obtained from $S\left(G_{1}\right)$ and $\left|\mathrm{V}\left(\mathrm{G}_{1}\right)\right|$ copies of G_{2}, all vertex-disjoint by joining the $i^{\text {th }}$ vertex of $\mathrm{V}\left(\mathrm{G}_{1}\right)$ to every vertex in the $i^{\text {th }}$ copy of G_{2}.

DEFINITION3.2.The Subdivision-edge Corona of two vertex disjoint graphs G_{1} and G_{2} denoted by $G_{1} \ominus G_{2}$ is the graph obtained from $S\left(G_{1}\right)$ and $\left|\mathrm{I}\left(\mathrm{G}_{1}\right)\right|$ copies of G_{2}, all vertexdisjoint, by joining the $i^{\text {th }}$ vertex of $\mathrm{I}\left(\mathrm{G}_{1}\right)$ to every vertex in the $i^{\text {th }}$ copy of G_{2}.

Let G_{1} is a graph on n_{1} vertices and m_{1} edges and G_{2} is a graph on n_{2} vertices and m_{2} edges then the subdivisionvertex Corona $G_{1} \odot G_{2}$ has $n_{1}\left(1+n_{2}\right)+m_{1}$ vertices and $2 m_{1}+n_{1}\left(n_{2}+m_{2}\right)$ edges, and the Subdivision-edge Corona $G_{1} \ominus G_{2}$ has $m_{1}\left(1+n_{2}\right)+n_{1}$ vertices and $m_{1}\left(2+n_{2}+m_{2}\right)$ edges.

THEOREM 3.3. Let P_{n} be a path of n vertices and P_{m} be a path of m vertices. Then
$\chi_{b}\left(P_{n} \odot P_{m}\right)=\left\{\begin{array}{ll}n-1 & n \geq m \\ m+1 & n<m\end{array}\right.$.
PROOF.
Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V\left(P_{m}\right)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. let $V\left(P_{n} \circ P_{m}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i j}: 1 \leq i \leq m ; 1 \leq j \leq\right.$
$m\}$.By the definition of corona graph, each vertex of P_{n} is adjacent to every vertex of a copy of P_{m}.

Assign the following n-coloring for $P_{n} \odot P_{m}$ as b-chromatic.

- For $1 \leq i \leq n$, assign the color c_{i} to v_{i}.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{1 i}, \forall i \neq 1$.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{2 i}, \forall i \neq 2$.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{3 i}, \forall i \neq 3$.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{n i}, \forall i \neq n$.
- For $1 \leq i \leq n$, assign to vertex $u_{i i}$ one of allowed colors.

Define $\chi_{b}\left(P_{3} \odot P_{2}\right)=5$.

- For $1 \leq i \leq 5$, assign the color c_{i} to v_{i}.
- For $1 \leq \ell \leq 5$, assign the color c_{i} to $u_{1 i} \forall i \neq 1$.
- For $1 \leq \ell \leq 5$, assign the color c_{i} to $u_{2 i} \forall i \neq 2$.
- For $1 \leq \ell \leq 5$, assign the color c_{i} to $u_{3 i} \forall i \neq 3$.

IV.VERTEX CORONA

4.1 GRAPHS WITH PATH

THEOREM4.1.1 Let Gbe a simple graph on n vertices. Then $\chi_{b}\left(\mathrm{G} \circ \mathrm{P}_{n}\right)=\left\{\begin{array}{lll}n+1, & \text { for } & n \leq 3 \\ n & \text { for } & n>3\end{array}\right.$

PROOF:
Let $\quad \mathrm{V}(\mathrm{G})=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\mathrm{V}\left(\mathrm{P}_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Let $\mathrm{V}\left(\mathrm{G} \circ P_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{U_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\}$.

By the definition of Corona graph each vertex of G is adjacent to every vertex of n copy of P_{n}. i.e) every vertex $v_{i} \in \mathrm{~V}(G)$ is adjacent to every vertex from the set $\left\{u_{i j}: 1 \leq j \leq n\right\}$.

Assign the following n-coloring for $\mathrm{G} \circ P_{n}$ as b-chromatic

- For $1 \leq i \leq n$, assign the color c_{i} to v_{i}.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{1 i}, \forall i \neq 1$.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{2 i}, \forall i \neq 2$.
- For $1 \leq i \leq n$, assign the color v_{i} to $u_{n i}, \forall i \neq n$. .
- For $1 \leq i \leq n$, assign the vertex $u_{i i}$ one of allowed colors-such color exists because $2 \leq \operatorname{deg}\left(\mathrm{u}_{i i}\right) \leq 3$ and $n>3$.

Let us assume that $\chi_{b}\left(\mathrm{G} \circ \mathrm{P}_{n}\right)$ is greater than n ie $)$ $\chi_{b}\left(\mathrm{G} \circ \mathrm{P}_{n}\right)=n+1 \quad \forall n>3$ there must be at least $n+1$ vertices of degree n in $\mathrm{G} \circ \mathrm{P}_{n}$ all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Since these are only
ones with degree at least n. This is a contradiction. b-coloring with $n+1$ colors is impossible.

Thus we have $\chi_{b}\left(\mathrm{G} \circ \mathrm{P}_{n}\right) \leq n$. Hence $\chi_{b}\left(\mathrm{G} \circ \mathrm{P}_{n}\right)=n$, $\forall n>3$.

Define b-coloring of $\mathrm{G} \circ \mathrm{P}_{4}(|\mathrm{~V}(\mathrm{G})|)=4$ with 5 colors in the following way:

- For $1 \leq i \leq 5$, assign the color c_{i} to v_{i}.
- For $1 \leq l \leq 5$, assign the color c_{l} to $u_{1 l}, \forall l \neq 1$.
- For $1 \leq l \leq 5$, assign the color c_{l} to $u_{2 l}, \forall l \neq 2$.
- For $1 \leq l \leq 5$, assign the color c_{l} to $u_{3 l}, \forall l \neq 3$.
- For $1 \leq l \leq 5$, assign the color c_{l} to $u_{4 l}, \forall l \neq 4$.
- For $1 \leq l \leq 5$, assign the color c_{l} to $u_{5 l}, \forall l \neq 5$.

We have

$$
\chi_{b}\left(\mathrm{G} \circ \mathrm{P}_{4}\right)=5 . \text { Hence } \chi_{b}\left(\mathrm{G} \circ \mathrm{P}_{n}\right)=n \quad \forall n>3
$$

4.2. GRAPH WITH CYCLE

THEOREM4.2.1. Let G be a simple graph on n vertices $n>3$. Then $\chi_{b}\left(\mathrm{G} \mathrm{\circ} \mathrm{C}_{n}\right)=n$.

Proof:
Let $\quad \mathrm{V}(\mathrm{G})=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\mathrm{V}\left(\mathrm{C}_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Let $\mathrm{V}\left(\mathrm{G} \circ C_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\} . \quad$ By the definition of Corona graph, each vertex of G is adjacent to every vertex of a copy of C_{n}. i.e., every vertex $v_{i} \in \mathrm{~V}(G)$ is adjacent to every vertex from the set $\left\{u_{i j}: 1 \leq j \leq n\right\}$.

Assign the following n-coloring for $\mathrm{G} \circ C_{n}$ as b-chromatic:

- For $1 \leq i \leq n$, assign the color c_{i} to v_{i}.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{1 i}, \forall i \neq 1$.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{2 i}, \forall i \neq 2$.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{n i}, \forall i \neq n$.
- For $1 \leq i \leq n$, assign to vertex $u_{i i}$ one of allowed colors-such color exists, because $\operatorname{deg}\left(\mathrm{u}_{i i}\right)=3$ and $n>3$.
$\chi_{b}\left(\mathrm{G} \circ \mathrm{C}_{n}\right) \geq n$. Assume that $\chi_{b}\left(\mathrm{G} \circ \mathrm{C}_{n}\right)$ is greater than n, ie) $\chi_{b}\left(\mathrm{G} \mathrm{\circ} \mathrm{C}_{n}\right)=n+1 \forall n>3$, there must be at least $n+1$ vertices of degree n in $\mathrm{G} \circ \mathrm{C}_{n}$, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Since these are only ones with degree at least n. This is the contradiction b-coloring with $n+1$ color is impossible.

We have $\chi_{b}\left(\mathrm{G} \circ \mathrm{C}_{n}\right)=n$. Hence $\chi_{b}\left(\mathrm{G} \circ \mathrm{C}_{n}\right)=n$,
$\forall n>3$.
$\chi_{b}\left(G \circ C_{3}\right)=4$.

4.3. CYCLE WITH PATH

THEOREM 4.3.1Let C_{n} be a cycle of n vertices and P_{n} be a path of n vertices. Then $\chi_{b}\left(\mathrm{C}_{n} \circ \mathrm{P}_{n}\right)=n$

Proof:
Let $\mathrm{V}\left(\mathrm{C}_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\mathrm{V}\left(\mathrm{P}_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$
.Let $\mathrm{V}\left(\mathrm{C}_{n} \circ P_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\}$, By the definition of Corona graph, each vertex of G is adjacent to every vertex of a copy of P_{n}. i.e., every vertex $v_{i} \in \mathrm{~V}\left(\mathrm{C}_{n}\right)$ is adjacent to every vertex from the set $\left\{u_{i j}: 1 \leq j \leq n\right\}$.
$\chi_{b}\left(\mathrm{C}_{n} \circ \mathrm{P}_{n}\right) \geq n$. Assign the following b-coloring for $C_{n} \circ P_{n}$.

- For $1 \leq i \leq n$, assign the color c_{i} to v_{i}.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{1 i}, \forall i \neq 1$.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{2 i}, \forall i \neq 2$.
- For $1 \leq i \leq n$, assign the color c_{i} to $u_{n i}, \forall i \neq n$.
- For $1 \leq i \leq n$, assign to vertex $u_{i i}$ one of allowed colors such color exists, because $2 \leq \operatorname{deg}\left(u_{i i}\right) \leq 3$ and $n \geq 3$.

We have $\chi_{b}\left(\mathrm{C}_{n} \circ \mathrm{P}_{n}\right) \leq n$. Hence $\chi_{b}\left(\mathrm{C}_{n} \circ \mathrm{P}_{n}\right)=n$.
We have $\chi_{b}\left(\mathrm{C}_{3} \circ \mathrm{P}_{2}\right)=3$.

4.4. GRAPH WITH COMPLETE GRAPH

Theorem4.4.1 :Let G be a simple graph on n vertices. Then $\chi_{b}\left(G \circ K_{n}\right)=n+1$.

Proof.

$$
\text { Let } \mathrm{V}(\mathrm{G})=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { and } \mathrm{V}\left(\mathrm{~K}_{n}\right)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}
$$

$\operatorname{Let} V\left(G \circ K_{n}\right)=\left\{v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i j}: 1 \leq i \leq n ; 1 \leq j \leq n\right\}$. By the definition of corona graph, each vertex of G is adjacent to every vertex of a copy of K_{n}. i.e., every vertex $v_{i} \in \mathrm{~V}(G)$ is adjacent to every vertex from the set $\left\{u_{i j}: 1 \leq j \leq n\right\}$.
Assign the following $n+1$-coloring for $\mathrm{G} \circ K_{n}$ as bchromatic:

- For $1 \leq i \leq n$, assign the color c_{i} to v_{i}.
- For $1 \leq l \leq n$, assign the color c_{l} to $u_{1 l}, \forall l \neq 1$.
- For $1 \leq l \leq n$, assign the color c_{l} to $u_{2 l}, \forall l \neq 2$.
- For $1 \leq l \leq n$, assign the color c_{l} to $u_{3 l}, \forall l \neq 3$.
- For $1 \leq l \leq n$, assign the color c_{l} to $u_{4 l}, \forall l \neq 4$.
\qquad
- For $1 \leq l \leq n$, assign the color c_{l} to $u_{n l}, \forall l \neq n$.
- For $1 \leq l \leq n$, assign the color c_{n+1} and $u_{l l}$ Therefore, $\chi_{b}\left(G \circ K_{n}\right) \geq n+1$.

Let us assume that $\chi_{b}\left(G \circ K_{n}\right)$ is greater than $n+1$, i.e., $\chi_{b}\left(G \circ K_{n}\right)=n+2$, there must be at least $n+2$ vertices of degree $n+1$ in $\mathrm{G} \circ K_{n}$, all with distinct colors, and each adjacent to vertices of all of the other colors. But then these must be the vertices $v_{1}, v_{2}, \ldots v_{n}$, since these are only ones with degree at least $n+1$. This is the contradiction, b-coloring with $n+2$ colors is impossible. Thus, we have $\chi_{b}\left(G \circ K_{n}\right) \leq n+1 .$. Hence, .

V. CONCLUSION

In this existing subdivision-vertex corona graphs, they used spectrum. Here we study about subdivision- vertex corona graph using b-chromatic number.

REFERENCE

[1] B.Effantin, The b-chromatic number of power graphs of complete caterpillars, J. Discrete Math. Sci. Cryptogr. 8(2005), 483-502.
[2] B.Effantin and H.Kheddouci, The b-chromatic number of some power graphs, Discrete Math. Theor.Comput.Sci. 6 (2003).45-54.
[3] B.Effantin and H.Kheddouci. Exact value for the b-chromatic number of a power complete k-ary tree, J. Discrete Math. Sci. Cryptogr. 8 (2005), 117-129.
[4] F. Bonomo, G.Duran, F.Maffray, J.Marenco and M.Valencia-pabon, On the b-colring of cographs and P_{4}-sparse graphs, Graphs and Combinatorics, 25(2) (2009), 153-167.
[5] R.W. Irving and D.F. Manlove, The b-Chromatic number of a graph, Discrete Appl.Math. 91 (1999), 127-141.
[6] M. Kouider and A. El Sahili, About b-colouring of regular graphs, Rapport de Recherche No 1432, CNRS-Universite Paris SudLRI, 02/2006.
[7] Marko Jakovacand SandiKlavzar, The b-Chromatic number of cubic graphs, Graphs and Combinatorics, 26(1) (2010) 107-118.
[8] Venkatachalam.M and vernoldVivin.J, The b-Chromatic number of star graph families, Le Mathematiche, 65(1) (2010), 119-125.
[9] D. M. Cvetkovic, M. Doob, H. Simic, An Introduction to the Theory of Graph Spectra, Cambridge University Press, Cambridge, 2010.
[10] G.Indulal, Spectrum of two new joins of graphs and infinte families of integral graphs, KragujevacJ.Math. 36 (2012) 133-139.
[11] R. Frucht, F.Haray, On the corona of two graphs, Aequationes Math. 4 (1970) 322-325.
[12] I. Gopalapillai, The spectrum of neighborhood corona of graphs, Kragujevacjournal of Mathematics 35 (2011) 493-500.

